CLASSIFICATION OF ALMOST CONTACT METRIC STRUCTURES ON 3D LIE GROUPS
نویسندگان
چکیده
We study almost contact metric structures on 3-dimensional Lie algebras and investigate the class of left invariant corresponding groups. introduce a general approach we obtain full classification in dimension three.
منابع مشابه
Almost Contact Metric Structures on 5-Dimensional Nilpotent Lie Algebras
We study almost contact metric structures on 5-dimensional nilpotent Lie algebras and investigate the class of left invariant almost contact metric structures on corresponding Lie groups. We determine certain classes that a five-dimensional nilpotent Lie group can not be equipped with.
متن کاملLeft Invariant Contact Structures on Lie Groups
A result from Gromov ensures the existence of a contact structure on any connected non-compact odd dimensional Lie group. But in general such structures are not invariant under left translations. The problem of finding which Lie groups admit a left invariant contact structure (contact Lie groups), is then still wide open. We perform a ‘contactization’ method to construct, in every odd dimension...
متن کاملSub-Riemannian structures on 3D Lie groups
We give a complete classification of left-invariant sub-Riemannian structures on three dimensional Lie groups in terms of the basic differential invariants. As a corollary we explicitly find a sub-Riemannian isometry between the nonisomorphic Lie groups SL(2) and A(R)× S, where A(R) denotes the group of orientation preserving affine maps on the real line.
متن کاملGeometric Structures on Nilpotent Lie Groups: on Their Classification and a Distinguished Compatible Metric
Let (N, γ) be a nilpotent Lie group endowed with an invariant geometric structure (cf. symplectic, complex, hypercomplex or any of their ‘almost’ versions). We define a left invariant Riemannian metric on N compatible with γ to be minimal, if it minimizes the norm of the invariant part of the Ricci tensor among all compatible metrics with the same scalar curvature. We prove that minimal metrics...
متن کاملEinstein structures on four-dimensional nutral Lie groups
When Einstein was thinking about the theory of general relativity based on the elimination of especial relativity constraints (especially the geometric relationship of space and time), he understood the first limitation of especial relativity is ignoring changes over time. Because in especial relativity, only the curvature of the space was considered. Therefore, tensor calculations should be to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Sciences
سال: 2023
ISSN: ['1072-3374', '1573-8795']
DOI: https://doi.org/10.1007/s10958-023-06374-5